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Introduction 
 
A general function 𝑧(𝑥, 𝑦) can be implemented on a 
slide rule if there exist scale functions 𝑓(𝑥), 𝑔(𝑦), and 
ℎ(𝑧) such that 
 

 ℎ൫𝑧(𝑥, 𝑦)൯ = 𝑓(𝑥) + 𝑔(𝑦). 
 

(1) 

Here ℎ is a function that maps 𝑧 to a distance along the 
slide rule, 𝑓 maps 𝑥 to distance, and 𝑔 maps 𝑦 to 
distance. Of course, the mapping (1) is not unique: one 
may introduce additive constants 𝑎 and 𝑏, and a 
nonzero multiplicative constant 𝑐, to give a different 
but equivalent slide rule mapping: 
 

ℎ෨൫𝑧(𝑥, 𝑦)൯ = 𝑓ሚ(𝑥) + 𝑔෤(𝑦) 
with 

𝑓ሚ(𝑥) = 𝑐 𝑓(𝑥) + 𝑎, 
𝑔෤(𝑦) = 𝑐 𝑔(𝑦) + 𝑏, 

and 
ℎ෨(𝑧) = 𝑐 ℎ(𝑧) + 𝑎 + 𝑏. 

 
The standard logarithmic slide rule operates on this 
approach for multiplication (𝑧 = 𝑥𝑦, 𝑓 = 𝑔 = ℎ = ln) 
and division (𝑧 = 𝑥/𝑦, 𝑓 = −𝑔 = ℎ = ln). Empirical 
formulas with non-logarithmic scales obey Eq. (1) 
also. 

The first empirical function of two variables put on a 
slide rule is believed to be John Dicas’s hydrometer 
correction (Fig. 1). Understanding this particular slide 
rule is what motivated the general analysis presented 
below.  
 
Other authors have been concerned with general two-
variable functions from different perspectives. Alfeld1, 
Szalkai2,3,4 and Hoffman4 investigate the scales 
associated with two-variable functions with Eq. (1) in 
mind, but their focus is on expressions 𝑧(𝑥, 𝑦) that can 
be written in closed form. That approach leads to a 
search for associated sets of four functions (𝑧, 𝑓, 𝑔, ℎ), 
all expressible as exact mathematical functions. 
 
In contrast, the approach taken here is to explore the 
mathematical implications of Eq. (1) without regard to 
specific instances. This approach leads to constraints 
on the function 𝑧(𝑥, 𝑦) by itself, without any 
knowledge or consideration of the mapping functions 
𝑓, 𝑔, or ℎ. If 𝑧 satisfies the given conditions, the 
mapping functions are easily determined to within 
additive and multiplicative constants. The benefit of 
this approach is that it is truly general and can be 
applied to tabulated or algorithmically-defined 
functions. The difficulty with the approach is that its 
explanation relies on a bit of calculus and its 
evaluation benefits from numerical methods, 
particularly for non-analytical functions. 

 

 
 

FIGURE 1.  A slide rule for the temperature correction of hydrometer readings by John Dicas, ca 1780. 
Temperature in °F is placed opposite the fleur de lis (top left). The uncorrected hydrometer reading from 0 
to 370 is located on the slider, and the corrected alcohol strength is read on the frame scales. The inner 
scale is believed to be Dicas’s and the outer scale Clarke’s.  
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The necessary properties of 𝒛(𝒙, 𝒚) 
 
The key property of slide rule mapping Eq. (1) is its 
“additive separability.” On the left-hand side, the 
independent variables 𝑥 and 𝑦 are inseparably linked 
by the abstract function 𝑧. But the right-hand side 
consists of a function of 𝑥 only added to a function of 
𝑦 only. Differentiation of Eq. (1) by 𝑥 will eliminate 
the 𝑦-dependence on the right-hand side of Eq. (1), and 
differentiation by 𝑦 eliminates the 𝑥-dependence. The 
mixed second derivative eliminates the right-hand side 
altogether: 
 

𝜕ଶ

𝜕𝑥𝜕𝑦
ℎ൫𝑧(𝑥, 𝑦)൯ = 0, 

 

or, 
 

ℎᇱᇱ𝑧௫𝑧௬ + ℎᇱ𝑧௫௬ = 0 
 
after expanding the left-hand side. Rearranging this 
result separates the ℎ-dependence to one side: 
 

𝑑

𝑑𝑧
ln ℎᇱ (𝑧) =  − 

𝑧௫௬

𝑧௫𝑧௬

.  

 
The left-hand side of this equation depends on 𝑧 only, 
therefore the right-hand side must also depend only on 
𝑧. The partial derivative of the right-hand side with 
respect to 𝑥, while holding 𝑧 constant, must be zero. 
With some manipulation this statement gives the result 
 

𝑧௬

𝜕

𝜕𝑥
ฬ

௭

𝑧௫௬

𝑧௫𝑧௬

=  
𝜕ଶ

𝜕𝑥𝜕𝑦
ൣln 𝑧௫ − ln 𝑧௬൧ = 0. 

 
Recalling that the second mixed derivative of an 
additively separable function is zero, we conclude that 
the term in square brackets is additively separable. 
Rearranging somewhat, 
 

ln ቆ−
𝑧௫

𝑧௬

ቇ = ln ൬
𝜕𝑦

𝜕𝑥
ฬ

௭
൰ = 𝑢(𝑥) + 𝑣(𝑦) 

 
for some functions 𝑢(𝑥) and 𝑣(𝑦). Alternatively, 
 

 𝜕𝑦

𝜕𝑥
ฬ

௭
= 𝑒௨(௫)𝑒௩(௬). 

 

(2) 

This is the first key result: knowing nothing about 𝑓, 
𝑔, or ℎ, we can say that a function 𝑧(𝑥, 𝑦) can 
somehow be implemented on a slide rule only if 
contours of constant 𝑧 have slopes obeying the 
multiplicative decomposition indicated by Eq. (2). If 
the functions 𝑢(𝑥) and 𝑣(𝑦) are continuous, then the 

slopes cannot change sign. (The slopes can be negative 
using Euler’s identity, exp(𝜋𝑖) = −1, to introduce a 
constant imaginary part to the sum 𝑢 + 𝑣, but the slope 
cannot change between positive and negative if 𝑢 + 𝑣 
is continuous.) It will be seen that the practical 
requirement that mappings be monotonic also forbids 
changes of sign in Eq. (2). 
 
This is already a powerful result in that it indicates the 
existence of an unbounded number of slide-rule-
capable functions. It also provides a simple test of 
suitability. For example, if Eq. (2) holds true, then the 
ratio of slopes taken at different 𝑥 values, 
 

 𝜕𝑦
𝜕𝑥

ฬ
௭

(𝑥ଵ, 𝑦)

𝜕𝑦
𝜕𝑥

ฬ
௭

(𝑥ଶ, 𝑦)
= 𝑒௨(௫భ)ି௨(௫మ) 

 

 
 
,                  (3) 

is independent of 𝑦. Likewise, a ratio of slopes 
evaluated at different 𝑦 values must be independent of 
𝑥. 
 

The mapping functions 𝒇, 𝒈, and 𝒉 
 
Eq. (2) describes the slopes of the 𝑧 function but it does 
not relate functions 𝑢 or 𝑣 to the value of the function 
𝑧. However, if point (𝑥, 𝑦) and point (𝑥ᇱ, 𝑦ᇱ) lie on the 
same contour of constant 𝑧, then integrating Eq. (2) 
gives 
 

 

න 𝑒௨(௫)𝑑𝑥 =  න 𝑒ି௩(௬)  𝑑𝑦.

௬ᇲ

௬

௫ᇲ

௫

 

(4) 

 
If, furthermore, the points (𝑥ᇱ, 𝑦ᇱ) lie on some fiducial 
curve where 𝑧 is known then Eq. (4) would be a way 
to determine the value of 𝑧 at any point (𝑥, 𝑦). For 
instance, suppose the primed points were on a fiducial 
line 𝑦ᇱ = 𝑚 𝑥ᇱ + 𝑏 on which 𝑥ᇱ = 𝜔(𝑧), then 
Eq. (4) could be rearranged to give 
 

  

න 𝑒ି௩(௬)𝑑𝑦 −  න 𝑒௨(௫)𝑑𝑥

ఠ(௭)

௫బ

௠ఠ(௭)ା௕ 

௬బᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௛(௭)

 

 
 
   (5) 

 
= න 𝑒௨(௫)𝑑𝑥

௫బ

௫ᇣᇧᇧᇤᇧᇧᇥ
௙(௫)

+ න 𝑒ି௩(௬)𝑑𝑦

௬

௬బᇣᇧᇧᇤᇧᇧᇥ
௚(௬)

 
 
 
, 

 
which has the form of the additively separable Eq. (1). 
In this equation the constants 𝑥଴ and 𝑦଴ are arbitrary. 
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This is the second main result: exponential integrals of 
the functions 𝑢(𝑥) and −𝑣(𝑦) determine the mapping 
functions 𝑓, 𝑔, and ℎ. The particulars of the fiducial 
curve depend somewhat on the function being 
modeled. Eq. (5) also shows that continuity in 𝑢 and 𝑣 
assures monotonicity of the scale functions 𝑓 and 𝑔. 

Multiplication 

If this analysis is correct then it should deduce that 𝑓 =
𝑔 = ℎ = ln for 𝑧(𝑥, 𝑦) = 𝑥𝑦. For this multiplication 
function, 

𝜕𝑦

𝜕𝑥
ฬ

௭
=  − 

𝑦

𝑥
= 𝑒గ௜ା  ln ௬ି ln ௫

using Euler’s identity to change the sign, so one could 
choose 𝑢(𝑥) = 𝜋𝑖 − ln 𝑥 and 𝑣(𝑦) = ln 𝑦 . Let us also 
choose 𝑦ᇱ = 1 as the fiducial line, on which 𝑥ᇱ = 𝑧: in 
Eq. (5) let 𝑚 = 0, 𝑏 = 1, and 𝜔(𝑧) = 𝑧. Then, 

ℎ(𝑧) =  න
𝑑𝑦

𝑦

ଵ

௬బ

+ න
𝑑𝑥

𝑥

௭

௫బ

= ln 𝑧 − ln 𝑥଴ − ln 𝑦଴ 

𝑓(𝑥) =  − න
𝑑𝑥

𝑥

௫బ

௫

= ln 𝑥 − ln 𝑥଴ 

𝑔(𝑦) =  න
𝑑𝑦

𝑦
= ln 𝑦 − ln 𝑦଴.

௬

௬బ

 

We obtain the expected slide rule mapping ln(𝑥𝑦) =
ln(𝑥) + ln(𝑦) upon simplification or by choosing 
𝑥଴ = 𝑦଴ = 1. 

Had one chosen instead 𝑢(𝑥) = − ln 𝑥 and 𝑣(𝑦) =
𝜋𝑖 + ln 𝑦 then one would have obtained the essentially 
identical result − ln(𝑥𝑦) = − ln(𝑥) − ln(𝑦) . The 
diagonal fiducial 𝑦 = √𝑧 with 𝑥 = √𝑧 likewise gives 
the expected answer. 

Empirical functions: Dicas’s hydrometer 
correction 

In the multiplication example the function 𝑧 being 
modeled had a simple analytical expression which 
yielded analytical expressions for the key functions 
𝑢(𝑥) and 𝑣(𝑦). Sometimes 𝑧 is known only from a 
table of numbers, or a complex numerical algorithm. 
In such cases a purely mathematical analysis fails and 
one must resort to numerical approximation.  

To illustrate the approach, I will focus on the specific 
example of the temperature correction of a hydrometer 
reading. Hydrometers operate on Archimedes’ 
principle of buoyancy. A hydrometer will sit high in a 
dense fluid, but sink low in a light one. To the extent 

that alcohol affects the density of a water-alcohol 
solution, a hydrometer’s reading is an indication of 
alcoholic strength. Hydrometers have been used since 
Boyle in the 17th Century to assess alcoholic spirits.5 

Temperature also affects a hydrometer’s reading. It 
can cause expansion or contraction of the fluid, and a 
different expansion or contraction of the hydrometer 
body, and both of these changes modify the 
instrument’s buoyancy. Therefore, to make an 
accurate determination of alcoholic strength one must 
account for the effect of temperature. Clarke’s 
hydrometer approximated this temperature correction 
in the 18th Century by application of discrete so-called 
weather weights.6 

In 1780 John Dicas, a Liverpool brandy merchant, 
patented an improved alcohol hydrometer that placed 
the water-alcohol continuum on a continuous scale 
from 0 to 370, and which implemented a continuous 
temperature correction using a slide rule.7 Dicas’s 
hydrometer and its slide rule were adopted by the U.S. 
Treasury at the recommendation of Alexander 
Hamilton in 1790,8 and it remained the U.S. standard 
until about 1851.9 

Dicas’s instruments thus played a key role in the early 
days of the American republic. His invention also 
played a pivotal role in the history of slide rules. His 
temperature-correcting slide rule is (to my knowledge) 
the first implementation of an empirical function of 
two variables.10 Until his 1780 patent, slide rules were 
restricted to applications of logarithmic scales and 
one-dimensional functions which are essentially just 
look-up tables. The “segment lying” and “segment 
standing” scales of Everard type gaugers’ slide rules 
are examples of these one-dimensional functions.11 
These scales can be determined using calculus,12 but 
the lines of numbers were most likely empirically 
derived, at least on early slide rules.13 

The idea behind Dicas’s application became widely 
adopted. In 1803, a competition was held to replace 
Clarke’s hydrometer as the UK standard. Entries by 
Mary Dicas (John’s daughter), John and George Quin, 
Robert Atkins, and by John Dring and William Fage 
all included temperature-correcting slide rules. The 
winner of the competition, Bartholomew Sikes, was 
the only entrant to rely on a book of tables instead of a 
slide rule.14,15 However, during the 19th Century 
makers of Sikes’ hydrometer including Bates, Buss, 
Farrow and Jackson, Gill, and Long, all produced slide 
rules for Sikes’s hydrometers. Dicas adapted the idea 
to the lactometer and saccharometer, and Thomas 
Thomson’s Allan saccharometer used a slide rule for 
temperature correction. In the 20th Century, Francis 
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Charles Farmar invented a slide rule for spirits dealers 
that featured an empirical dilution calculation. 
 
Nothing is known about the empirical data John Dicas 
relied on, or how he used it to construct his slide rules. 
We can gain an appreciation for his accomplishment, 
however, using modern data and computational 
algorithms to interpret Eq. (5). For data, an algebraic 
expression exists for the density of water-alcohol 
mixtures as a function of temperature and the mass 
fraction of ethanol (OIML).16 Using 51 × 10ି଺/K as 
the thermal expansion of copper accounts for the 
instrument effect. Let 𝑥 be the measured or apparent 
alcoholic proof at measurement temperature 𝑦. Let 
𝑧(𝑥, 𝑦) be the true alcoholic proof, or the value that 
would have been measured had the temperature been 
the reference temperature of 55°F.17 The natural choice 
of fiducial line is 𝑦ᇱ = 55°F where 𝑧 = 𝑥ᇱ (i.e., 𝑚 = 0, 
𝑏 = 55°F, 𝜔 = 𝑧). The calculation 𝑧(𝑥, 𝑦) is outlined 
elsewhere.12 (For Sikes’s hydrometers the reference 
temperature is 51°F.) 
 
Given this starting point, the challenge is the 
determination of 𝑢(𝑥) and 𝑣(𝑦). This is done 
computationally by expanding the function in a basis 
with compact support, such as b-splines: 
 

 𝑢(𝑥) =  ෍ 𝑐௠

௠

 𝑝௠(𝑥)  

 𝑣(𝑦) =  ෍ 𝑑௡𝑞௡(𝑦)

௡

  
. 

 
In these expansions the basis functions 𝑝 and 𝑞 are fixed 
step-like or triangle-shaped functions centered at 
different points such that a suitably scaled combination 
of them can approximate any function. Let 𝑧̃(𝑥, 𝑦) be 
the hydrometer correction computed from 𝑢(𝑥) and 
 𝑣(𝑦) using Eq. (5). The true function 𝑧(𝑥, 𝑦) might not 
satisfy Eq. (2), and might not, therefore, be exactly 
implemented on a slide rule. The approximation 
𝑧̃ (𝑥, 𝑦), being determined by Eq. (5), may be “exactly” 
implemented on a slide rule, but it might not model the 
behavior of the hydrometer exactly. The sets of 
coefficients {𝑐} and {𝑑} are chosen to make 𝑧̃ be as 
close as possible to 𝑧 in a least squares sense. 
Computationally this is done by iteratively solving the 
numerical Taylor series approximation 
 

 
𝑧൫𝑥௜ , 𝑦௝൯ =  𝑧̃൫𝑥௜ , 𝑦௝൯ +  ෍

𝜕𝑧̃൫𝑥௜ , 𝑦௝൯

𝜕𝑐௠

𝛥𝑐௠

௠

 
 

 
+ ෍

𝜕𝑧̃൫𝑥௜ , 𝑦௝൯

𝜕𝑑௡

Δ𝑑௡

௡

 
 

   

 

 
 

FIGURE 2.  The black dashed curves represent contours of constant true proof calculated from the 
OIML data set. The slopes of these curves are generally positive, but in the cold-wet region the slopes 
can be negative. Solid blue curves are contours of a least squares best fit to the slide rule compatible 
model (Eq. (5)). The brown dot-dash line is the 55°F fiducial curve. 
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FIGURE 3.  The solid curves are the mapping functions for temperature (top, 𝒈) and proof (bottom, 𝒇, 𝒉) 
computed during the fitting process. The superimposed points come from the slide rule in Fig. 1. The 
model scale is chosen so that the 30 to 80°F distances match exactly. 

 
for sets of corrections {Δ𝑐} and {Δ𝑑} to the weighting 
coefficients. When the iteration converges, 𝑧̃ is a least 
squares best fit to 𝑧 on the chosen quadrature points 
(indices 𝑖, 𝑗).18 

 

Contours of the true proof function derived from the 
OIML data set, together with contours of the slide rule 
compatible fit are presented in Fig. 2. (Imperial proof 
units were used because most of the hydrometer 
correcting slide rules produced use these units. Dicas’s 
does not.) The dotted black curves are contours of the 
“exact” OIML function. Note that these generally have 
positive slope, but in the cold-wet region the slope is 
sometimes negative. In this region, violations of Eq. 
(3) are distinct. We may conclude that the “exact” 
function is not compatible with implementation on a 
slide rule without further approximation. 
 
The solid blue curves in Fig. 2 are a best fit of the exact 
model using slide rule compatible Eq. (5). Contours of 
this fit match the exact function closely at high proof 
and high temperature, but the fit is quite poor in the 
cold-wet region where the exact function does not 
obey the necessary conditions. 
 
The fitting calculation that produced Fig. 2 generated 
the functions 𝑢 and 𝑣, and the mapping functions 𝑓, 𝑔, 
and ℎ. Because the fiducial curve is horizontal, ℎ = 𝑓 

to within an additive constant. These mapping 
functions are displayed in Fig. 3 together with points 
digitized from the Dicas slide rule in Fig. 1.  
 
Dicas measured proof using the system of Clarke’s 
hydrometer in which 100 gallons of a spirit that is “𝑥% 
above proof” becomes proof after addition of 𝑥 gallons 
of water. Sikes’s and modern systems use a different 
basis: 100 gallons of a “𝑥% over proof” spirit can be 
diluted to give 100 + 𝑥 gallons at proof. These 
systems are different because of the excess volume of 
mixing. Conversion of the digitized Dicas scale to an 
Imperial scale took this into account, together with 
Blagden’s16 measurement of Dicas proof spirit as 
having specific gravity 0.922 at 55°F. 
 
The length of the scales was adjusted to make the 
distance between 30° and 80°F match. The exact 
correspondence of Dicas’s temperature scale with the 
best fit in Fig. 3 is indicative of both scales being 
linear. In the model linearity is driven by the data, not 
model assumptions. Whether Dicas knew this or 
simply followed Occam’s Razor is a mystery. 
 
The frame of Dicas’s slide rule has two proof scales 
that are unlabeled. The innermost scale corresponds 
best with a labeled “Dicas” scale on a slide rule 
produced by his son-in-law Benjamin Gammage.
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FIGURE 4.  Contours of error: the true proof function deduced from the interpretation of Dicas’ slide 
rule (Fig. 1) and an `exact´ calculation using the OIML data set. 

 
Saunders,19 who also produced a Dicas slide rule, put 
Dicas’s scale inside and Clarke’s outside. With these 
observations I will interpret the inner scale as 
corresponding to Dicas’s system. Both scales are 
compressed by about 15% from the best fit scale. This 
suggests that Dicas’s slide rule may have 
underestimated the necessary temperature correction. 
 
The discrepancy between the inferred behavior of 
Dicas’s calculation and the modern OIML one shown 
in Figure 4. It is quite small everywhere other than the 
cold-wet region. A hydrometer would rarely be relied 
on in this low proof region, since spirits have much 
higher proof and wines have dissolved sugars that 
render hydrometers unreliable. Dicas’s slide rule is 
therefore quite accurate everywhere that matters. 
 
As a basis of comparison, it is interesting to contrast the 
true proof correction using international standards 
(OIML and the thermal expansivity of glass) to the US 
Government’s gauging tables. At 77°P (US) and 1°F 
(cold but not in the cold-wet region) the OIML 
calculation gives 100.74°P whereas the Alcohol 
Tobacco Tax and Trade Bureau (TTB) Gauging Table 
#1 gives 102.8°P. This difference, which rounds to 
1.8°IP, is considerably larger than Dicas’s error at the 
same point. 

Conclusions 
 

The conditions necessary for any function of two 
variables, 𝑧(𝑥, 𝑦), to be implemented on a slide rule 
have been derived. It is shown that, to within a 
multiplicative and an additive constant, the functions 
(𝑓, 𝑔, ℎ) that map variables (𝑥, 𝑦, 𝑧) to distance may be 
deduced from the function 𝑧(𝑥, 𝑦), even when that 
function cannot be expressed in a closed form. 
 
This analysis was applied to the problem of a 
hydrometer’s temperature correction: the first known 
implementation of an empirical function on a slide rule, 
by John Dicas in 1780. While Dicas’s data and his 
methods are unknown, his results are shown to be 
exceptionally accurate. Indeed, at points his slide rule 
correction is more accurate than the TTB gauging tables 
if more modern international standards are taken to be 
exact.  
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